The intrinsic growth rate as a predictor of population viability under climate warming.

نویسندگان

  • Priyanga Amarasekare
  • Renato M Coutinho
چکیده

1. Lately, there has been interest in using the intrinsic growth rate (rm) to predict the effects of climate warming on ectotherm population viability. However, because rm is calculated using the Euler-Lotka equation, its reliability in predicting population persistence depends on whether ectotherm populations can achieve a stable age/stage distribution in thermally variable environments. Here, we investigate this issue using a mathematical framework that incorporates mechanistic descriptions of temperature effects on vital rates into a stage-structured population model that realistically captures the temperature-induced variability in developmental delays that characterize ectotherm life cycles. 2. We find that populations experiencing seasonal temperature variation converge to a stage distribution whose intra-annual pattern remains invariant across years. As a result, the mean annual per capita growth rate also remains constant between years. The key insight is the mechanism that allows populations converge to a stationary stage distribution. Temperature effects on the biochemical processes (e.g. enzyme kinetics, hormonal regulation) that underlie life-history traits (reproduction, development and mortality) exhibit well-defined thermodynamical properties (e.g. changes in entropy and enthalpy) that lead to predictable outcomes (e.g. reduction in reaction rates or hormonal action at temperature extremes). As a result, life-history traits exhibit a systematic and predictable response to seasonal temperature variation. This in turn leads to temporally predictable temperature responses of the stage distribution and the per capita growth rate. 3. When climate warming causes an increase in the mean annual temperature and/or the amplitude of seasonal fluctuations, the population model predicts the mean annual per capita growth rate to decline to zero within 100 years when warming is slow relative to the developmental period of the organism (0.03-0.05°C per year) and to become negative, causing population extinction, well before 100 years when warming is fast (e.g. 0.1°C per year). The Euler-Lotka equation predicts a slower decrease in rm when warming is slow and a longer persistence time when warming is fast, with the deviation between the two metrics increasing with increasing developmental period. These results suggest that predictions of ectotherm population viability based on rm may be valid only for species with short developmental delays, and even then, only over short time-scales and under slow warming regimes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Population decrease of Scirpophaga incertulas Walker (Lepidoptera Pyralidae) under climate warming

Scirpophaga incertulas Walker is an important agricultural pest in Asia. Only few studies are available on its long-term population dynamics under climate warming. In this study, we used the linear and generalized additive models (GAMs) to analyze the historical dataset of >50 years on this pest at Xinfeng County of Jiangxi Province, China. The main objective of this study was to explore the ef...

متن کامل

Optimization of Reservoir Operation using a Bioinspired Metaheuristic Based on the COVID-19 Propagation Model

Recently, global warming problems with rapid population growth and socio-economic development have intensified the demand for water and increased tensions on water supplies. This research evolves the Multi-Objective Coronavirus Optimization Algorithm (MOCVOA) to obtain operational optimum rules of Voshmgir Dam reservoir under the climate change conditions. The climatic variables downscaled and ...

متن کامل

Variations trend of climate parameters affecting on grape growth (Case study: Khorasan Razavi Province)

The present study aims to investigate the structure and trend of climate parameters affecting grape growth in Khorasan Razavi (north eastern Iran) in the period of 1991-2015 in 8 weather stations. Effective climate elements such as temperature, precipitation, the number of hot days, the number of frost days, sunshine hours and parameters such as maximum temperature, annualaverageannual average ...

متن کامل

Allocation trade-off under climate warming in experimental amphibian populations

Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on a...

متن کامل

Meat-eating: The Second Main Culprit of Climate Change

Background: Due to the greenhouse gases emission caused by human activities there is wide agreement about global warming. Methane is one of the most dangerous greenhouse gases in the global warming process which is produced through human activities and natural processes. In addition, the use of fertilizers and chemical pesticides would produce nitrogen monoxide in the atmosphere. This gas is an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of animal ecology

دوره 82 6  شماره 

صفحات  -

تاریخ انتشار 2013